

Cekit

About

Container image creation tool. Cekit was previously known as Concreate. If your migrating from concreate tool, please follow
upgrade instructions http://cekit.readthedocs.io/en/develop/installation.html#installing-cekit.

Cekit helps to build container images from image definition files with strong focus on modularity and code reuse.

Features

	Building container images [http://cekit.readthedocs.io/en/develop/build.html] from YAML image definitions

	Integration/unit testing [http://cekit.readthedocs.io/en/develop/test.html] of images

	Releasing container images by building it in Red Hat supported build system

Installation

If you are running Fedora, you can install Cekit easily via:

dnf copr enable @cekit/cekit
dnf install python3-cekit

For other platforms, please refer to documentation [http://cekit.readthedocs.io/en/develop/installation.html].

Usage

First steps tutorial is under construction, for now please refer to the cekit --help output.

Documentation

Documentation is available here [http://cekit.readthedocs.io/en/develop/].

Operation Guide

This chapter will guide you through all the Cekit basic usage. After reading you should have Cekit installed
and be familiar with building and testing images with it.

	Installation
	Installing Cekit

	Upgrading

	Building image
	Executing builds

	Artifact Caching
	Managing Cache

	Overrides
	Overrides Chaining

	How overrides works

	Removing keys

	Testing images
	About Tests

	Running specific test

	Skipping tests

	Developing modules locally

	Injecting local artifacts

	Repository management
	Best Practices

	Image Help Pages
	Adding the help page to your image

	Providing your own help page template

	Red Hat Environment
	Tools

	Environment Variables

	Labels

	Repositories

Installation

This chapter will guide you through all the steps needed to setup Cekit on your operating system.

Contents

	Installation

	Installing Cekit

	Fedora / CentOS / RHEL

	Fedora

	RHEL

	Other systems

	Build

	Test

	Upgrading

	Fedora / CentOS / RHEL

	Fedora

	CentOS & RHEL

	Other systems

	Fedora / CentOS / RHEL

	Fedora

	CentOS

	RHEL

	Other systems

	Dotfile migration

Installing Cekit

We provide RPM packages for Fedora, CentOS, RHEL distribution. Cekit installation on other platforms is still possible via pip

Fedora / CentOS / RHEL

On RHEL derivatives we strongly suggest installing Cekit using the YUM/DNF package manager. We provide a COPR repository for Cekit [https://copr.fedorainfracloud.org/coprs/g/cekit/cekit/]
which contains everything needed to install Cekit.

Fedora

Supported versions: 27, 28.

For Fedora we provide custom Copr repository. To enable the repository and install Cekit on your system please run:

yum install yum-plugin-copr
yum copr enable @cekit/cekit
yum install python2-cekit

RHEL

Supported versions: 7.x

For RHEL we provide custom Copr repository. To enable the repository and install Cekit on your system please run:

curl https://copr.fedorainfracloud.org/coprs/g/cekit/cekit/repo/epel-7/group_cekit-cekit-epel-7.repo -o /etc/yum.repos.d/cekit-epel-7.repo
yum install python2-cekit

Other systems

We strongly advise to use Virtualenv [https://virtualenv.pypa.io/en/stable/] to install Cekit. Please consult your package manager for the correct package name.

To create custom Python virtual environment please run following commands on your system:

Prepare virtual environment
virtualenv ~/cekit
source ~/cekit/bin/activate

Install Cekit
Execute the same command to upgrade to latest version
pip install -U cekit

Now you are able to run Cekit
cekit --help

Note

Every time you want to use Cekit you must activate Cekit Python virtual environment by executing source ~/cekit/bin/activate

Build

To build container images you need one of the following:

	docker

	buildah

Test

For running tests you need:

	docker

	docker python bindings

	behave

	python-lxml

Upgrading

Fedora / CentOS / RHEL

On this platform you should be using RPM and our COPR repository for Cekit [https://copr.fedorainfracloud.org/coprs/g/cekit/cekit/]

Note: We assume, that you have this repository enabled on your system

Fedora

Supported versions: 25, 26, 27.

dnf update python3-cekit

CentOS & RHEL

Supported versions: 7.

yum update python2-cekit

Other systems

We suggest using pip and Virtualenv [https://virtualenv.pypa.io/en/stable/] to host you Cekit.

Activate virtual environment
source ~/cekit/bin/activate

pip install -U cekit

Upgrading from Concreate

Cekit and Concreate are the very same tool. Concreate was rename to Cekit in 2.0 release.

Fedora / CentOS / RHEL

You should be using RPM and yum/dnf to manage Cekit/Concreate installation here.

Fedora

Supported versions: 25, 26, 27.

dnf remove python3-concreate
dnf copr remove goldmann/concreate

dnf copr enable @cekit/cekit
dnf install python3-cekit

CentOS

Supported versions: 7.

yum remove python2-concreate
rm -rf /etc/yum.repos.d/_copr_goldmann-concreate.repo

yum copr enable @cekit/cekit
yum install python2-cekit

RHEL

Supported versions: 7.

yum remove python2-concreate
rm -rf /etc/yum.repos.d/goldmann-concreate-epel-7.repo

curl https://copr.fedorainfracloud.org/coprs/g/cekit/cekit/repo/epel-7/group_cekit-cekit-epel-7.repo -o /etc/yum.repos.d/cekit-epel-7.repo
yum install python2-cekit

Other systems

We strongly advise to use Virtualenv [https://virtualenv.pypa.io/en/stable/] to install Cekit. Please consult
your package manager of choice for the correct package name.

Activate virtual environment
source ~/cekit/bin/activate

pip uninstall concreate
pip install -U cekit

Dotfile migration

Concreate used ~/.concreate.d and ~/.concreate dot files to held its configuration. This was changed with Cekit.
Cekit uses only ~/.cekit directory to host all its configuration files.

To migrate your configuration please run:

mv ~/.concreate.d ~/.cekit
mv ~/.concreate ~/.cekit/config

Building image

Cekit supports following builder engines:

	Docker – build the container image using docker build [https://docs.docker.com/engine/reference/commandline/build/] command and it default option

	OSBS – build the container image using OSBS service [https://osbs.readthedocs.io]

	Buildah – build the container image using Buildah [https://github.com/projectatomic/buildah]

Executing builds

You can execute an container image build by running:

$ cekit build

Options affecting builder:

	--tag – an image tag used to build image (can be specified multiple times)

	--redhat – build image using Red Hat defaults. See Configuration section for Red Hat specific options for additional details.

	–add-help` – add generated help.md file to the image

	–no-add-help` – don’t add generated help.md file to the image

	--work-dir – sets Cekit works directory where dist_git repositories are cloned into See Configuration section for work_dir

	--build-engine – a builder engine to use osbs, buildah or docker 1

	--build-pull – ask a builder engine to check and fetch latest base image

	--build-osbs-stage – use rhpkg-stage tool instead of rhpkg

	--build-osbs-release 2 – perform a OSBS release build

	--build-osbs-user – alternative user passed to rhpkg –user

	--build-osbs-target – overrides the default rhpkg target

	--build-osbs-nowait – run rhpkg container-build with –nowait option specified

	--build-tech-preview 2 – updates image descriptor name key to contain -tech-preview suffix in family part of the image name

Example: If your name in image descriptor is: jboss-eap-7/eap7, generated name will be: jboss-eap-7-tech-preview/eap7.

	1

	docker build engine is default

	2(1,2)

	option is valid on for osbs build engine

Docker build

This is the default way to build an container image. The image is build using docker build.

Example: Building a docker image

$ cekit build

OSBS build

This build engine is using rhpkg container-build to build the image using OSBS service. By default
it performs scratch build. If you need a release build you need to specify --build-osbs-release parameter.

Example: Performing scratch build

$ cekit build --build-engine=osbs

Example: Performing release build

$ cekit build --build-engine=osbs --build-osbs-release

Buildah build

This build engine is based on Buildah [https://github.com/projectatomic/buildah]. Buildah still doesn’t
support non-privileged builds so you need to have sudo configured to run buildah as a root user on
your desktop.

Note

If you need to use any non default registry, please update /etc/containers/registry.conf file.

Example: Building image using Buildah

$ cekit build --build-engine=buildah

Artifact Caching

Cekit is automatically caching all artifacts used to build the image. This means that if your image descriptor contains following artifact:

artifacts:
 # File will be downloaded and verified.
 - name: jolokia-1.3.6-bin.tar.gz
 url: https://github.com/rhuss/jolokia/releases/download/v1.3.6/jolokia-1.3.6-bin.tar.gz
 md5: 75e5b5ba0b804cd9def9f20a70af649f

It will be automatically cached into ~/.cekit/cache/ directory during image build. This is useful as the artifact will be automatically copied from cache instead of downloading it again on any rebuild.

Note

Artifacts in cache are discovered by a hash value. So even if you define same artifact by different name it will be discovered in cache and copied into your image. This also means that Cekit is using cache only for artifacts which define at least one hash.

Managing Cache

Cekit contains command line tool called cekit-cache which is used to manage its cache.

Options affecting cekit-cache:

	--verbose – setups verbose output

	--work-dir – sets Cekit works directory where cache directory is located. See Configuration section for work_dir

	--version – prints Cekit version

Note

All cache related files are places in your --work-dir inside cache subdirectory. This is ~/.cekit/cache by default. This means that
cache is realted to your --work-dir and switching your --work-dir will use different artifact cache.

Caching an artifact manually

Cekit supports caching an artifact manually. This is very use full if you need to introduce non-public
artifact to a Cekit. To cache an artifact you need to specify path to the artifact on filesystem or its URL and one of the supported hashes (md5, sha256, sha512).

Example: Specifying an artifact via path:

$ cekit-cache add path/to/file --md5 checksum

Example: Specifying an artifact via url:

$ cekit-cache add https://foo.bar/baz --sha256 checksum

Options affecting cekit-cache add:

	--md5 – contains md5 hash of an artifact

	--sha256 – contains sha256 hash of an artifact

	--sha512 – contains sha512 hash of an artifact

Listing cached artifacts

To list all artifact known to a Cekit cache you need to run following command:

$ cekit-cache ls

After running the command you can see following output:
.. code:

Cached artifacts:
912c3cc4-7bd3-445d-9927-5063ba3b3bc1:
 sha256: 04b95a87ee88e1cba7682884ea7f89d5ec097c0fa513e7aca1366d79fb3290a8
 sha1: 9cbe5393b6837849edbc067fe1a1405ff0c43605
 md5: f97f623e5b614a7b6d1eb5ff7158027b
 names:
 hawkular-javaagent-1.0.1.Final-redhat-2-shaded.jar
d9171217-744e-43af-8d2f-5ee04f2fd741:
 sha256: 223d394c3912028ddd18c6401b3aa97fe80e8d0ae3646df2036d856f35f18735
 sha1: 7c32933edaea4ba40bdcc171e25a0a9c36e2de20
 md5: d31c6b1525e6d2d24062ef26a9f639a8
 names:
 jolokia-jvm-1.5.0.redhat-1-agent.jar

As you can see, we’ve got listing of two artifacts and they’re represented by uuid. One is 912c3cc4-7bd3-445d-9927-5063ba3b3bc1 which is hawkular-javaagent-1.0.1.Final-redhat-2-shaded.jar. Second one is d9171217-744e-43af-8d2f-5ee04f2fd741 which is jolokia-jvm-1.5.0.redhat-1-agent.jar. The artifacts uuids are auto generated when artifact is cached and serves as an unique id of an artifact.

Note

Artifact uuid is also used as a filename for an artifact, you can see them in your ~/.cekit/cache directory.

Removing cached artifact

If you are not interested in particular artifact being at your cache you can delete
it by executing following command:

$ cekit-cache rm uuid

Note

You can get uuid of any artifact by invoking cekit-cache ls command. Please consult Listing cached artifacts

Wiping whole cache

To wipe whole artifact cache you need to manually remove cache subdirectory inside your --work-dir.

Example: To remove your cache located in ~/.cekit/cache directory run:

$ rm -rf ~/.cekit/cache

Overrides

During an image life cycle there can be a need to do a slightly tweaked builds - using different base images, injecting newer libraries etc. We want to support such scenarios without a need of duplicating whole image sources. To achieve this Cekit supports overrides mechanism for its image descriptor. You can override almost anything in image descriptor. The overrides are based on overrides descriptor - a YAML object containing overrides for the image descriptor.

To use an override descriptor you need to pass --overides-file argument to a Cekit. You can also pass JSON/YAML object representing changes directly via --overrides command line argument.

Example: To use overrides.yaml file located in current working directory run:

$ cekit build --overrides-file overrides.yaml

Example: To override a label via command line run:

$ cekit build --overrides "{'labels': [{'name': 'foo', 'value': 'overridden'}]}"

Overrides Chaining

You can even specify multiple overrides. Overrides are resolved that last specified is the most important one. This means that values from last override specified overrides all values from former ones.

Example: If you run following command, label foo will be set to baz.

$ cekit build --overrides "{'labels': [{'name': 'foo', 'value': 'bar'}]} --overrides "{'labels': [{'name': 'foo', 'value': 'baz'}]}"

How overrides works

Cekit is using YAML [http://yaml.org/] format for its descriptors. Overrides in cekit works on YAML node [http://www.yaml.org/spec/1.2/spec.html#id2764044] level.

Scalar nodes

Scalar nodes are easy to override, if Cekit finds any scalar node in an overrides descriptor it updates its value in image descriptor with the overridden one.

Example: Overriding scalar node:

image descriptor

schema_version: 1
name: "dummy/example"
version: "0.1"
from: "busybox:latest"

overrides descriptor

schema_version: 1
from: "fedora:latest"

overridden image descriptor

schema_version: 1
name: "dummy/example"
version: "0.1"
from: "fedora:latest"

Sequence nodes

Sequence nodes are little bit tricky, if they’re representing plain arrays, we cannot easily override any value so Cekit is just replacing the whole sequence.

Example: Overriding plain array node:

image descriptor

schema_version: 1
name: "dummy/example"
version: "0.1"
from: "busybox:latest"
run:
 cmd:
 - "echo"
 - "foo"

overrides descriptor

schema_version: 1
run:
 cmd:
 - "bar"

overridden image descriptor

schema_version: 1
name: "dummy/example"
version: "0.1"
from: "busybox:latest"
run:
 cmd:
 - "bar"

Mapping nodes

Mappings are merged via name key. If Cekit is overriding an mapping or array of mappings it tries to find a name key in mapping and use and identification of mapping. If two name keys matches, all keys of the mapping are updated.

Example: Updating mapping node:

image descriptor

schema_version: 1
name: "dummy/example"
version: "0.1"
from: "busybox:latest"
envs:
- name: "FOO"
 value: "BAR"

overrides descriptor

schema_version: 1
envs:
- name: "FOO"
 value: "new value"

overridden image descriptor

schema_version: 1
name: "dummy/example"
version: "0.1"
from: "busybox:latest"
envs:
- name: "FOO"
 value: "new value"

Removing keys

Overriding can result into a need of removing any key from a descriptor. You can achieve this by overriding a key with a YAML null value ~.

Example: Remove value from a defined variable

If you have a variable defined in a following way:

envs:
 - name: foo
 value: bar

you can remove value key via following override:

envs:
 - name: foo
 value: ~

It will result into following variable definition:

envs:
 - name: foo

Testing images

Cekit is able to run behave [https://behave.readthedocs.io/] based
tests for images. We suggest you read the Behave documentation before reading
this chapter.

An image can be tested by running:

$ cekit test

Test options

	--test-wip – only run tests tagged with the @wip tag.

	--test-steps-url – a git repository url containing steps [https://pythonhosted.org/behave/tutorial.html#python-step-implementations] for tests.

	--tag altname – overrides the name of the Image used for testing to altname. Only the first occurrence of this argument is honoured.

	--test-name – part of the Scenario name to be executed

About Tests

Behave tests are defined in two separate parts: steps and features.

You can place the files defining tests in a tests directory next to the
image descriptor, module descriptor or in a root of a git repository which
contains the modules.

The tests directory is structured as follows:

tests/features
tests/features/amq.feature
tests/steps
tests/steps/custom_steps.py

The tests/features directory is the place where you can drop your behave
features. [https://pythonhosted.org/behave/gherkin.html]

The tests/steps directory is optional and contains custom steps [https://pythonhosted.org/behave/tutorial.html#python-step-implementations]
for the specific image/module.

We strongly recommend that a test is written for every feature that is added to the image.

Cekit comes with a list of build-in steps that are available for use in
tests. See the steps repository [https://github.com/jboss-openshift/cekit-test-steps].

Where necessary we encourage people to add or extend these steps.

Tags

Cekit selects which tests to run via the tags mechanism. Here are several
examples of ways ways that tags could be used for managing tests across a set
of related images:

	Product tags

Tags based on image names. Cekit derives two test tag names from the
name of the Image being tested. The whole image name is converted into one
tag, and everything before the first ‘/’ character is converted into
another.
Example: If you are testing the jboss-eap-7/eap7 image,
tests will be invoked with tags @jboss-eap-7 and @jboss-eap-7/eap7.

If --tag is specified, then the argument is used in place of the Image
name for the process above.
Example If you provided --tag foo/bar, then the tags used would be
@foo and @foo/bar.

	Wip tags

This is very special behavior used mainly in development. Its purpose is to
to limit the tests to be run to a subset you are working on. To achieve this
you should mark your in-development test scenarios with the @wip tag and
run cekit test --test-wip. All other scenarios not tagged @wip
will be ignored.

	The @ci tag

If cekit is not running as a user called jenkins, the tag @ci
is added to the list of ignored tags, meaning any tests tagged @ci are
ignored and not executed.

The purpose of this behavior is to ease specifying tests that are only
executed when run within Jenkins CI.

Running specific test

Cekit enables you to run specific Scenario only. To do it you need to run Cekit with
--test-name <name of the tests> command line argument.

Example: If you have following Scenario in your feature files:

Scenario: Check custom debug port is available
When container is started with env
variable	value
DEBUG	true
DEBUG_PORT	8798
Then check that port 8798 is open

Then you can instruct Cekit to run this test in a following way:

$ cekit test --test-name 'Check custom debug port is available'

Note

--test-name switch can be specified multiple times and only the Scenarios
matching all of the names are executed.

Skipping tests

If there is a particular test which needs to be temporally disabled, you can use @ignore
tag to disable it.

For example to disable following Scenario:

Scenario: Check custom debug port is available
When container is started with env
variable	value
DEBUG	true
DEBUG_PORT	8798
Then check that port 8798 is open

You need to tag it with @ignore tag in a following way:

@ignore
Scenario: Check custom debug port is available
When container is started with env
variable	value
DEBUG	true
DEBUG_PORT	8798
Then check that port 8798 is open

Developing modules locally

Cekit enables you to use a work in progress modules to build the image by exploiting its overrides system. As an example, imagine we have very simple image which is using one module from a cct_module repository like this:

schema_version: 1
name: "dummy/example"
version: "0.1"
from: "jboss/openjdk18-rhel7:1.1"
modules:
 repositories:
 - git:
 url: https://github.com/jboss-openshift/cct_module.git
 ref: master
 install:
 - name: s2i-common

Now imagine, we have found a bug in its s2i-common module. We will clone the module repository localy by executing:

	Clone cct_module to your workstation to ~/repo/cct_module

$ git clone https://github.com/jboss-openshift/cct_module.git /home/user/repo/cct_module

	Then we will create override.yaml next to the image.yaml, override.yaml should look like:

schema_version: 1
modules:
 repositories:
 - path: "/home/user/repo/cct_module"

	We now can build the image using overridden module by executing:

$ cekit generate --overrides overrides.yaml

	When your work is finished, commit and push your changes to a module repository and remove overrides.yaml

Injecting local artifacts

During module/image development there can be a need to use locally built artifact instead of a released one. The easiest way to inject
such artifact is to use override mechanism.

To override an artifact imagine, that you have an artifact defined in a way:

- md5: d31c6b1525e6d2d24062ef26a9f639a8
 name: jolokia.jar
 url: https://maven.repository.redhat.com/ga/org/jolokia/jolokia-jvm/1.5.0.redhat-1/jolokia-jvm-1.5.0.redhat-1-agent.jar

And you want to inject a local build of new version of our artifact. To archive it you need to create following override:

- name: jolokia.jar
 path: /tmp/build/jolokia.jar

Whenever you override artifact, all previous checksums are removed too. If you want your new artifact to pass integrity checks you need to define checksum also in overrides in a following way:

- md5: d31c6b1525e6d2d24062ef26a9f639a8
 name: jolokia.jar
 path: /tmp/build/joloika.jar

Note

If the artifacts lacks the name key, its automatically created by using basename of the artifact path or url.

Repository management

One of the hardest challenges we faced with Cekit is how to manage and define package repositories
correctly. Our current solution works in following scenarios:

	Building CentOS or Fedora based images

	Building RHEL based images on subscribed hosts

	Building RHEL based images on unsubscribed hosts

Best Practices

To achieve such behavior in Red Hat Middleware Container Images we created following rules and suggestions.

Defining repositories in container images

You should use Plain repository definition for every repository as this will work easily on Red Hat subscribed host and will assume everyone can rebuild are RHEL based images.

Example: Define Software Collections repository

packages:
 repositories:
 - name: SCL
 id: rhel-server-rhscl-7-rpms

If you have repository defined this way, Cekit will not try to inject it and will expect the repository to be already available inside your container image. If it’s not provided by the image (for example repository definition already available in /etc/yum.repos.d/ directory) or the host (for example on via subscribed RHEL host [https://access.redhat.com/solutions/1443553]) you need to override this repository. To override a repository definition you need to specify a repository with same name. By overriding Plain repository type, you are actually saying that you have an external mechanism to inject the repository inside the image. This can be any supported repository type.

Note

You can view Plain repository type as an abstract classes and ODCS, RPM and URL repositories as an actual implementation.

Example: Override Software Collection repository for CentOS base

packages:
 repositories:
 - name: SCL
 rpm: centos-release-scl

Example: Override Software Collections repository with a custom yum repository file

packages:
 repositories:
 - name: SCL
 url:
 repository: https://foo.lan/scl.repo
 gpg: https://foo.lan/scl.gpg

Example: Override Software Collections repository with an ODCS

packages:
 repositories:
 - name: SCL
 odcs:
 pulp: rhel-server-rhscl-7-rpms

Note

See Red Hat Repository chapter which describes how Plain repositories are handled inside Red Hat Infrastructure.

Image Help Pages

At image build-time, Cekit generates a “help” documentation page, which is
saved adjacent to the generate image sources. The help page can optionally be
included into the image. The template used to generate the help page can be
overridden by the user’s configuration file, or the input image configuration,
either via the central image.yaml file, included modules or overrides.

Adding the help page to your image

There are two ways to instruct Cekit to add the help page to your image: either
Specify --add-help on the command-line when running the build phase, or
via your configuration file, in the doc section:

[doc]
addhelp = true

Providing your own help page template

The default help template is supplied within Cekit. You can override it for
every image via your configuration, or on a per-image basis in the image
definition.

Via configuration

Example:

[doc]
help_template = /home/jon/something/my_help.md

Via image definition

This could be in the master image.yaml, or in a module referenced from the
image.yaml, or on the command-line via --overrides or
--overrides-file:

Example:

…
help:
 template: /home/jon/something/my_help.md

Red Hat Environment

If you are running Cekit in Red Hat internal infrastructure it behaves differently. This behavior is triggered by changing redhat configuration option in Cekit configuration file.

Tools

Cekit integration with following tools is changed in following ways:

	runs rhpkg instead of fedpkg

	runs odcs command with --redhat option set

Environment Variables

Following variables are added into the image:

	JBOSS_IMAGE_NAME - contains name of the image

	JBOSS_IMAGE_VERSION - contains version of the image

Labels

Following labels are added into the image:

	name - contains name of the image

	version - contains version of the image

Repositories

In Red Hat we are using ODCS to access repositories for building our container images. To make our life little bit easier Cekit converts all Plain type repositories into ODCS ones. This assures we can perform reproducible builds of our images without any overrides or changes into image descriptors.

Example: Following Plain repository:

packages:
 repositories:
 - name: SCL
 id: rhel-server-rhscl-7-rpms

will be automatically converted into following ODCS repository:

packages:
 repositories:
 - name: SCL
 odcs:
 pulp: rhel-server-rhscl-7-rpms

Reference guide

This chapter provides overview of all posibble option for Cekit configuration, descriptors and command line switches.

	Image descriptor
	Name

	Version

	Description

	From

	help

	Environment variables

	Labels

	Artifacts

	Packages

	Repositories

	Ports

	Volumes

	Modules

	Run

	Module descriptor
	name

	Version

	Description

	From

	Environment variables

	Labels

	Artifacts

	Packages

	Repositories

	Ports

	Volumes

	Modules

	Run

	Overrides descriptor
	Name

	Version

	Description

	From

	Environment variables

	Labels

	Artifacts

	Packages

	Repositories

	Ports

	Volumes

	Modules

	Run

	Configuration file
	common

	doc

Image descriptor

Image descriptor contains all information Cekit needs to build and test a container image.

Contents

	Image descriptor

	Name

	Version

	Description

	From

	help

	Environment variables

	Labels

	Artifacts

	Packages

	Repositories

	Plain

	RPM

	ODCS

	URL

	Ports

	User

	Volumes

	Modules

	Module repositories

	Module installation

	Workdir

	Run

	Cmd

	Entrypoint

Name

This key is required.

Image name without the registry part.

name: "jboss-eap-7/eap70-openshift"

Version

This key is required.

Version of the image.

version: "1.4"

Description

Short summary of the image.

Value of the description key is added to the image as two labels: description
and summary unless such labels are already defined in the image descriptor’s
Labels section.

description: "Red Hat JBoss Enterprise Application 7.0 - An application platform for hosting your apps that provides an innovative modular, cloud-ready architecture, powerful management and automation, and world class developer productivity."

From

This key is required.

Base image of your image.

from: "jboss-eap-7-tech-preview/eap70:1.2"

help

The optional help sub-section defines a single key template, which can be used
to define a filename to use for generating image documentation at build time. By
default, a template supplied within Cekit is used.

At image build-time, the template is interpreted by the Jinja2 [http://jinja.pocoo.org/] template engine. For a concrete example, see the
default help.jinja supplied in the Cekit source code [https://github.com/cekit/cekit/blob/develop/cekit/templates/help.jinja].

help:
 template: myhelp.jinja

Environment variables

Similar to labels – we can specify environment variables that should be
present in the container after running the image. We provide envs
section for this.

Environment variables can be divided into two types:

	Information environment variables – these are set and available in
the image. This type of environment variables provide information to
the image consumer. In most cases such environment variables should not
be modified.

	Configuration environment variables – this type of variables are
used to define environment variables used to configure services inside
running container.

These environment variables are not set during image build time but can be set at run time.

Every configuration enviromnent variable should provide an example usage
(example) and short description (description).

Please note that you could have an environment variable with both: a value
and example set. This suggest that this environment variable could be redefined.

Note

Configuration environment variables (without value) are not
generated to the build source. These can be used instead as a
source for generating documentation.

envs:
 - name: "STI_BUILDER"
 value: "jee"
 - name: "JBOSS_MODULES_SYSTEM_PKGS"
 value: "org.jboss.logmanager,jdk.nashorn.api"
 - name: "OPENSHIFT_KUBE_PING_NAMESPACE"
 example: "myproject"
 description: "Clustering project namespace."
 - name: "OPENSHIFT_KUBE_PING_LABELS"
 example: "application=eap-app"
 description: "Clustering labels selector."

Labels

Note

Learn more about standard labels in container images [https://github.com/projectatomic/ContainerApplicationGenericLabels].

Every image can include labels. Cekit makes it easy to do so with the labels section.

labels:
 - name: "io.k8s.description"
 value: "Platform for building and running JavaEE applications on JBoss EAP 7.0"
 - name: "io.k8s.display-name"
 value: "JBoss EAP 7.0"

Artifacts

It’s common for images to require external artifacts.
In most cases you will want to add files into the image and use them at
the image build process.

Artifacts section is meant exactly for this. Cekit will automatically
fetch any artifacts specified in this section
and check their consistency by computing checksum of
the downloaded file and comparing it with the desired value. The output name
for downloaded resources will match the name attribute, which defaults to
the base name of the file/URL. Artifact locations may be specified as urls,
paths or git references.

Note

If you are using relative path to define an artifact, path is considered relative to an
image descriptor which introduced that artifact.

Example: If an artifact is defined inside /foo/bar/image.yaml with a path: baz/1.zip
the artifact will be resolved as /foo/bar/baz/1.zip

artifacts:
 # File will be downloaded and verified.
 - name: jolokia-1.3.6-bin.tar.gz
 url: https://github.com/rhuss/jolokia/releases/download/v1.3.6/jolokia-1.3.6-bin.tar.gz
 md5: 75e5b5ba0b804cd9def9f20a70af649f

 # File exists on local machine relative to this file. Checksum will be verified.
 # The "name" attribute defaults to: "hawkular-javaagent-1.0.0.CR4-redhat-1-shaded.jar"
 - path: local-artifacts/hawkular-javaagent-1.0.0.CR4-redhat-1-shaded.jar
 md5: e133776c76a474ed46ac88c856eabe34

 # git project will be cloned
 # "name" attribute defaults to "project"
 - git:
 url: https://github.com/organization/project
 ref: master

Note

Currently supported algorithms are: md5, sha1 and sha256. If no algorithm is provided, artifact will
be fetched every time.

For artifacts that are not publicly available Cekit provides a way to
add a description detailing a location from which the artifact can be obtained.

artifacts:
 - path: jboss-eap-6.4.0.zip
 md5: 9a5d37631919a111ddf42ceda1a9f0b5
 description: "Red Hat JBoss EAP 6.4.0 distribution available on Customer Portal: https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?softwareId=37393&product=appplatform&version=6.4&downloadType=distributions"

If Cekit is not able to download an artifact and this artifact has a description defined – the build
will fail but a message with the description will be printed together with information on where to place
the manually downloaded artifact.

Note

All artifacts are automatically cached during an image build. To learn more about cache please take a look at Artifact Caching

Packages

To install additional RPM packages you can use the packages
section where you specify package names and repositories to be used.

packages:
 install:
 - mongodb24-mongo-java-driver
 - postgresql-jdbc
 - mysql-connector-java
 - maven
 - hostname

Packages are defined in the install subsection.

Repositories

Cekit uses all repositories configured inside the image. You can also specify additional
repositories using repositories subsection. Cekit currently supports following multiple ways of defining
additional repositories:

	Plain

	RPM

	ODCS

	URL

Note

See Repository mangement to learn about best practices for repository
definitions.

Plain

This is the default option. With this approach you specify repository id and Cekit will not perform any action and expect the repository definition exists inside the image. This is useful as a hint which repository must be present for particular image to be buildable. The definition can be overridden by your preferred way of injecting repositories inside the image.

packages:
 repositories:
 - name: extras
 id: rhel7-extras-rpm
 description: "Repository containing extras RHEL7 extras packages"

Note

Behavior of plain repositories is changed when running in Red Hat Environment.

RPM

This ways is using repository configuration files and related keys packaged as an RPM.

Example: To enable CentOS SCL [https://wiki.centos.org/AdditionalResources/Repositories/SCL] inside the
image you should define repository in a following way:

packages:
 repositories:
 - name: scl
 rpm: centos-release-scl

ODCS

This way is instructs ODCS [https://pagure.io/odcs] to generate on demand pulp repositories.
To use ODCS define repository section in following way:

packages:
 repositories:
 - name: Extras
 odcs:
 repository: rhel-7-extras-rpm

Note

Only on demand pulp ODCS repositories are supported now.

URL

This approach enables you to download a yum repository file and corresponding GPG key. To do it, define
repositories section in a way of:

packages:
 repositories:
 - name: foo
 url:
 repository: https://web.example/foo.repo
 gpg: https://web.exmaple/foo.gpg

Ports

This section is used to mark which ports should be exposed in the
container. If we want to highlight a port used in the container, but not necessary expose
it – we should set the expose flag to false (true by default).

You can provide additional documentation as to the usage of the port with the
keys protocol, to specify which IP protocol is used over the port number (e.g
TCP, UDP…) and service to describe what network service is running on top
of the port (e.g. “http”, “https”). You can provide a human-readable long form
description of the port with the description key.

ports:
 - value: 8443
 service: https
 - value: 8778
 expose: false
 protocol: tcp
 description: internal port for frob communication.

User

Specifies the user (can be username or uid) that should be used to launch the entrypoint
process.

run:
 user: "alice"

Volumes

In case you want to define volumes for your image, just use the volumes section!

volumes:
 - name: "volume.eap"
 path: "/opt/eap/standalone"

Note

The name key is optional. If not specified the value of path key will be used.

Modules

Module repositories

Module repositories specify location of modules that are to be incorporated
into the image. These repositories may be git repositories or directories
on the local file system (path). Cekit will scan the repositories for
module.xml files, which are used to encapsulate image details that may be
incorporated into multiple images.

modules:
 repositories:
 # Modules pulled from Java image project on GitHub
 - git:
 url: https://github.com/jboss-container-images/redhat-openjdk-18-openshift-image
 ref: 1.0

 # Modules pulled locally from "custom-modules" directory, collocated with image descriptor
 - path: custom-modules

Module installation

The install section is used to define what modules should be installed in the image
in what order. Name used to specify the module is the name field from the module
descriptor.

modules:
 install:
 - name: xpaas.java
 - name: xpaas.amq.install

You can even request specific module version via version key as follows:

modules:
 install:
 - name: xpaas.java
 version: 1.2-dev
 - name: xpaas.amq.install

Workdir

Sets the current working directory of the entrypoint process in the container.

run:
 workdir: "/home/jboss"

Run

The run section encapsulates instructions related to launching main process
in the container including: cmd, entrypoint, user and workdir.
All subsections are described later in this paragraph.

Below you can find full example that uses every possible option.

run:
 cmd:
 - "argument1"
 - "argument2"
 entrypoint:
 - "/opt/eap/bin/wrapper.sh"
 user: "alice"
 workdir: "/home/jboss"

Cmd

Command that should be executed by the container at run time.

run:
 cmd:
 - "some cmd"
 - "argument"

Entrypoint

Entrypoint that should be executed by the container at run time.

run:
 entrypoint:
 - "/opt/eap/bin/wrapper.sh"

Module descriptor

Module descriptor contains all information Cekit needs to introduce a feature to an image. Modules are used as libraries or shared building blocks across images.

It is very important to make a module self-containg which means that executing
scripts defined in the module’s definition file should always end up in a state
where you could define the module as being installed.

Modules can be stacked – some modules will be run before, some after you module.
Please keep that in mind that at the time when you are developing a module – you don’t
know how and when it’ll be executed.

Contents

	Module descriptor

	name

	Version

	Description

	From

	Environment variables

	Labels

	Artifacts

	Packages

	Repositories

	Plain

	RPM

	ODCS

	URL

	Ports

	User

	Volumes

	Modules

	Module repositories

	Module installation

	Workdir

	Run

	Cmd

	Entrypoint

	Execute

name

This key is required.

Module name.

name: "python_flask_module"

Version

This key is required.

Version of the image.

version: "1.4"

Description

Short summary of the image.

Value of the description key is added to the image as two labels: description
and summary unless such labels are already defined in the image descriptor’s
Labels section.

description: "Red Hat JBoss Enterprise Application 7.0 - An application platform for hosting your apps that provides an innovative modular, cloud-ready architecture, powerful management and automation, and world class developer productivity."

From

This key is required.

Base image of your image.

from: "jboss-eap-7-tech-preview/eap70:1.2"

Environment variables

Similar to labels – we can specify environment variables that should be
present in the container after running the image. We provide envs
section for this.

Environment variables can be divided into two types:

	Information environment variables – these are set and available in
the image. This type of environment variables provide information to
the image consumer. In most cases such environment variables should not
be modified.

	Configuration environment variables – this type of variables are
used to define environment variables used to configure services inside
running container.

These environment variables are not set during image build time but can be set at run time.

Every configuration enviromnent variable should provide an example usage
(example) and short description (description).

Please note that you could have an environment variable with both: a value
and example set. This suggest that this environment variable could be redefined.

Note

Configuration environment variables (without value) are not
generated to the build source. These can be used instead as a
source for generating documentation.

envs:
 - name: "STI_BUILDER"
 value: "jee"
 - name: "JBOSS_MODULES_SYSTEM_PKGS"
 value: "org.jboss.logmanager,jdk.nashorn.api"
 - name: "OPENSHIFT_KUBE_PING_NAMESPACE"
 example: "myproject"
 description: "Clustering project namespace."
 - name: "OPENSHIFT_KUBE_PING_LABELS"
 example: "application=eap-app"
 description: "Clustering labels selector."

Labels

Note

Learn more about standard labels in container images [https://github.com/projectatomic/ContainerApplicationGenericLabels].

Every image can include labels. Cekit makes it easy to do so with the labels section.

labels:
 - name: "io.k8s.description"
 value: "Platform for building and running JavaEE applications on JBoss EAP 7.0"
 - name: "io.k8s.display-name"
 value: "JBoss EAP 7.0"

Artifacts

It’s common for images to require external artifacts.
In most cases you will want to add files into the image and use them at
the image build process.

Artifacts section is meant exactly for this. Cekit will automatically
fetch any artifacts specified in this section
and check their consistency by computing checksum of
the downloaded file and comparing it with the desired value. The output name
for downloaded resources will match the name attribute, which defaults to
the base name of the file/URL. Artifact locations may be specified as urls,
paths or git references.

Note

If you are using relative path to define an artifact, path is considered relative to an
image descriptor which introduced that artifact.

Example: If an artifact is defined inside /foo/bar/image.yaml with a path: baz/1.zip
the artifact will be resolved as /foo/bar/baz/1.zip

artifacts:
 # File will be downloaded and verified.
 - name: jolokia-1.3.6-bin.tar.gz
 url: https://github.com/rhuss/jolokia/releases/download/v1.3.6/jolokia-1.3.6-bin.tar.gz
 md5: 75e5b5ba0b804cd9def9f20a70af649f

 # File exists on local machine relative to this file. Checksum will be verified.
 # The "name" attribute defaults to: "hawkular-javaagent-1.0.0.CR4-redhat-1-shaded.jar"
 - path: local-artifacts/hawkular-javaagent-1.0.0.CR4-redhat-1-shaded.jar
 md5: e133776c76a474ed46ac88c856eabe34

 # git project will be cloned
 # "name" attribute defaults to "project"
 - git:
 url: https://github.com/organization/project
 ref: master

Note

Currently supported algorithms are: md5, sha1 and sha256. If no algorithm is provided, artifact will
be fetched every time.

For artifacts that are not publicly available Cekit provides a way to
add a description detailing a location from which the artifact can be obtained.

artifacts:
 - path: jboss-eap-6.4.0.zip
 md5: 9a5d37631919a111ddf42ceda1a9f0b5
 description: "Red Hat JBoss EAP 6.4.0 distribution available on Customer Portal: https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?softwareId=37393&product=appplatform&version=6.4&downloadType=distributions"

If Cekit is not able to download an artifact and this artifact has a description defined – the build
will fail but a message with the description will be printed together with information on where to place
the manually downloaded artifact.

Note

All artifacts are automatically cached during an image build. To learn more about cache please take a look at Artifact Caching

Packages

To install additional RPM packages you can use the packages
section where you specify package names and repositories to be used.

packages:
 install:
 - mongodb24-mongo-java-driver
 - postgresql-jdbc
 - mysql-connector-java
 - maven
 - hostname

Packages are defined in the install subsection.

Repositories

Cekit uses all repositories configured inside the image. You can also specify additional
repositories using repositories subsection. Cekit currently supports following multiple ways of defining
additional repositories:

	Plain

	RPM

	ODCS

	URL

Note

See Repository mangement to learn about best practices for repository
definitions.

Plain

This is the default option. With this approach you specify repository id and Cekit will not perform any action and expect the repository definition exists inside the image. This is useful as a hint which repository must be present for particular image to be buildable. The definition can be overridden by your preferred way of injecting repositories inside the image.

packages:
 repositories:
 - name: extras
 id: rhel7-extras-rpm
 description: "Repository containing extras RHEL7 extras packages"

Note

Behavior of plain repositories is changed when running in Red Hat Environment.

RPM

This ways is using repository configuration files and related keys packaged as an RPM.

Example: To enable CentOS SCL [https://wiki.centos.org/AdditionalResources/Repositories/SCL] inside the
image you should define repository in a following way:

packages:
 repositories:
 - name: scl
 rpm: centos-release-scl

ODCS

This way is instructs ODCS [https://pagure.io/odcs] to generate on demand pulp repositories.
To use ODCS define repository section in following way:

packages:
 repositories:
 - name: Extras
 odcs:
 repository: rhel-7-extras-rpm

Note

Only on demand pulp ODCS repositories are supported now.

URL

This approach enables you to download a yum repository file and corresponding GPG key. To do it, define
repositories section in a way of:

packages:
 repositories:
 - name: foo
 url:
 repository: https://web.example/foo.repo
 gpg: https://web.exmaple/foo.gpg

Ports

This section is used to mark which ports should be exposed in the
container. If we want to highlight a port used in the container, but not necessary expose
it – we should set the expose flag to false (true by default).

You can provide additional documentation as to the usage of the port with the
keys protocol, to specify which IP protocol is used over the port number (e.g
TCP, UDP…) and service to describe what network service is running on top
of the port (e.g. “http”, “https”). You can provide a human-readable long form
description of the port with the description key.

ports:
 - value: 8443
 service: https
 - value: 8778
 expose: false
 protocol: tcp
 description: internal port for frob communication.

User

Specifies the user (can be username or uid) that should be used to launch the entrypoint
process.

run:
 user: "alice"

Volumes

In case you want to define volumes for your image, just use the volumes section!

volumes:
 - name: "volume.eap"
 path: "/opt/eap/standalone"

Note

The name key is optional. If not specified the value of path key will be used.

Modules

Module repositories

Module repositories specify location of modules that are to be incorporated
into the image. These repositories may be git repositories or directories
on the local file system (path). Cekit will scan the repositories for
module.xml files, which are used to encapsulate image details that may be
incorporated into multiple images.

modules:
 repositories:
 # Modules pulled from Java image project on GitHub
 - git:
 url: https://github.com/jboss-container-images/redhat-openjdk-18-openshift-image
 ref: 1.0

 # Modules pulled locally from "custom-modules" directory, collocated with image descriptor
 - path: custom-modules

Module installation

The install section is used to define what modules should be installed in the image
in what order. Name used to specify the module is the name field from the module
descriptor.

modules:
 install:
 - name: xpaas.java
 - name: xpaas.amq.install

You can even request specific module version via version key as follows:

modules:
 install:
 - name: xpaas.java
 version: 1.2-dev
 - name: xpaas.amq.install

Workdir

Sets the current working directory of the entrypoint process in the container.

run:
 workdir: "/home/jboss"

Run

The run section encapsulates instructions related to launching main process
in the container including: cmd, entrypoint, user and workdir.
All subsections are described later in this paragraph.

Below you can find full example that uses every possible option.

run:
 cmd:
 - "argument1"
 - "argument2"
 entrypoint:
 - "/opt/eap/bin/wrapper.sh"
 user: "alice"
 workdir: "/home/jboss"

Cmd

Command that should be executed by the container at run time.

run:
 cmd:
 - "some cmd"
 - "argument"

Entrypoint

Entrypoint that should be executed by the container at run time.

run:
 entrypoint:
 - "/opt/eap/bin/wrapper.sh"

Execute

Execute section defines what needs to be done to install this module in the image.
Every execution listed in this section will be run at image build time in the order
as defined.

execute:
 # The install.sh file will be executed first as root user
 - script: install.sh
 # Then the redefine.sh file will be executed as jboss user
 - script: redefine.sh
 user: jboss

Note

When no user is defined, root user will be used to execute the script.

Overrides descriptor

Contents

	Overrides descriptor

	Name

	Version

	Description

	From

	Environment variables

	Labels

	Artifacts

	Packages

	Repositories

	Plain

	RPM

	ODCS

	URL

	Ports

	User

	Volumes

	Modules

	Module repositories

	Module installation

	Workdir

	Run

	Cmd

	Entrypoint

Name

This key is required.

Image name without the registry part.

name: "jboss-eap-7/eap70-openshift"

Version

This key is required.

Version of the image.

version: "1.4"

Description

Short summary of the image.

Value of the description key is added to the image as two labels: description
and summary unless such labels are already defined in the image descriptor’s
Labels section.

description: "Red Hat JBoss Enterprise Application 7.0 - An application platform for hosting your apps that provides an innovative modular, cloud-ready architecture, powerful management and automation, and world class developer productivity."

From

This key is required.

Base image of your image.

from: "jboss-eap-7-tech-preview/eap70:1.2"

Environment variables

Similar to labels – we can specify environment variables that should be
present in the container after running the image. We provide envs
section for this.

Environment variables can be divided into two types:

	Information environment variables – these are set and available in
the image. This type of environment variables provide information to
the image consumer. In most cases such environment variables should not
be modified.

	Configuration environment variables – this type of variables are
used to define environment variables used to configure services inside
running container.

These environment variables are not set during image build time but can be set at run time.

Every configuration enviromnent variable should provide an example usage
(example) and short description (description).

Please note that you could have an environment variable with both: a value
and example set. This suggest that this environment variable could be redefined.

Note

Configuration environment variables (without value) are not
generated to the build source. These can be used instead as a
source for generating documentation.

envs:
 - name: "STI_BUILDER"
 value: "jee"
 - name: "JBOSS_MODULES_SYSTEM_PKGS"
 value: "org.jboss.logmanager,jdk.nashorn.api"
 - name: "OPENSHIFT_KUBE_PING_NAMESPACE"
 example: "myproject"
 description: "Clustering project namespace."
 - name: "OPENSHIFT_KUBE_PING_LABELS"
 example: "application=eap-app"
 description: "Clustering labels selector."

Labels

Note

Learn more about standard labels in container images [https://github.com/projectatomic/ContainerApplicationGenericLabels].

Every image can include labels. Cekit makes it easy to do so with the labels section.

labels:
 - name: "io.k8s.description"
 value: "Platform for building and running JavaEE applications on JBoss EAP 7.0"
 - name: "io.k8s.display-name"
 value: "JBoss EAP 7.0"

Artifacts

It’s common for images to require external artifacts.
In most cases you will want to add files into the image and use them at
the image build process.

Artifacts section is meant exactly for this. Cekit will automatically
fetch any artifacts specified in this section
and check their consistency by computing checksum of
the downloaded file and comparing it with the desired value. The output name
for downloaded resources will match the name attribute, which defaults to
the base name of the file/URL. Artifact locations may be specified as urls,
paths or git references.

Note

If you are using relative path to define an artifact, path is considered relative to an
image descriptor which introduced that artifact.

Example: If an artifact is defined inside /foo/bar/image.yaml with a path: baz/1.zip
the artifact will be resolved as /foo/bar/baz/1.zip

artifacts:
 # File will be downloaded and verified.
 - name: jolokia-1.3.6-bin.tar.gz
 url: https://github.com/rhuss/jolokia/releases/download/v1.3.6/jolokia-1.3.6-bin.tar.gz
 md5: 75e5b5ba0b804cd9def9f20a70af649f

 # File exists on local machine relative to this file. Checksum will be verified.
 # The "name" attribute defaults to: "hawkular-javaagent-1.0.0.CR4-redhat-1-shaded.jar"
 - path: local-artifacts/hawkular-javaagent-1.0.0.CR4-redhat-1-shaded.jar
 md5: e133776c76a474ed46ac88c856eabe34

 # git project will be cloned
 # "name" attribute defaults to "project"
 - git:
 url: https://github.com/organization/project
 ref: master

Note

Currently supported algorithms are: md5, sha1 and sha256. If no algorithm is provided, artifact will
be fetched every time.

For artifacts that are not publicly available Cekit provides a way to
add a description detailing a location from which the artifact can be obtained.

artifacts:
 - path: jboss-eap-6.4.0.zip
 md5: 9a5d37631919a111ddf42ceda1a9f0b5
 description: "Red Hat JBoss EAP 6.4.0 distribution available on Customer Portal: https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?softwareId=37393&product=appplatform&version=6.4&downloadType=distributions"

If Cekit is not able to download an artifact and this artifact has a description defined – the build
will fail but a message with the description will be printed together with information on where to place
the manually downloaded artifact.

Note

All artifacts are automatically cached during an image build. To learn more about cache please take a look at Artifact Caching

Packages

To install additional RPM packages you can use the packages
section where you specify package names and repositories to be used.

packages:
 install:
 - mongodb24-mongo-java-driver
 - postgresql-jdbc
 - mysql-connector-java
 - maven
 - hostname

Packages are defined in the install subsection.

Repositories

Cekit uses all repositories configured inside the image. You can also specify additional
repositories using repositories subsection. Cekit currently supports following multiple ways of defining
additional repositories:

	Plain

	RPM

	ODCS

	URL

Note

See Repository mangement to learn about best practices for repository
definitions.

Plain

This is the default option. With this approach you specify repository id and Cekit will not perform any action and expect the repository definition exists inside the image. This is useful as a hint which repository must be present for particular image to be buildable. The definition can be overridden by your preferred way of injecting repositories inside the image.

packages:
 repositories:
 - name: extras
 id: rhel7-extras-rpm
 description: "Repository containing extras RHEL7 extras packages"

Note

Behavior of plain repositories is changed when running in Red Hat Environment.

RPM

This ways is using repository configuration files and related keys packaged as an RPM.

Example: To enable CentOS SCL [https://wiki.centos.org/AdditionalResources/Repositories/SCL] inside the
image you should define repository in a following way:

packages:
 repositories:
 - name: scl
 rpm: centos-release-scl

ODCS

This way is instructs ODCS [https://pagure.io/odcs] to generate on demand pulp repositories.
To use ODCS define repository section in following way:

packages:
 repositories:
 - name: Extras
 odcs:
 repository: rhel-7-extras-rpm

Note

Only on demand pulp ODCS repositories are supported now.

URL

This approach enables you to download a yum repository file and corresponding GPG key. To do it, define
repositories section in a way of:

packages:
 repositories:
 - name: foo
 url:
 repository: https://web.example/foo.repo
 gpg: https://web.exmaple/foo.gpg

Ports

This section is used to mark which ports should be exposed in the
container. If we want to highlight a port used in the container, but not necessary expose
it – we should set the expose flag to false (true by default).

You can provide additional documentation as to the usage of the port with the
keys protocol, to specify which IP protocol is used over the port number (e.g
TCP, UDP…) and service to describe what network service is running on top
of the port (e.g. “http”, “https”). You can provide a human-readable long form
description of the port with the description key.

ports:
 - value: 8443
 service: https
 - value: 8778
 expose: false
 protocol: tcp
 description: internal port for frob communication.

User

Specifies the user (can be username or uid) that should be used to launch the entrypoint
process.

run:
 user: "alice"

Volumes

In case you want to define volumes for your image, just use the volumes section!

volumes:
 - name: "volume.eap"
 path: "/opt/eap/standalone"

Note

The name key is optional. If not specified the value of path key will be used.

Modules

Module repositories

Module repositories specify location of modules that are to be incorporated
into the image. These repositories may be git repositories or directories
on the local file system (path). Cekit will scan the repositories for
module.xml files, which are used to encapsulate image details that may be
incorporated into multiple images.

modules:
 repositories:
 # Modules pulled from Java image project on GitHub
 - git:
 url: https://github.com/jboss-container-images/redhat-openjdk-18-openshift-image
 ref: 1.0

 # Modules pulled locally from "custom-modules" directory, collocated with image descriptor
 - path: custom-modules

Module installation

The install section is used to define what modules should be installed in the image
in what order. Name used to specify the module is the name field from the module
descriptor.

modules:
 install:
 - name: xpaas.java
 - name: xpaas.amq.install

You can even request specific module version via version key as follows:

modules:
 install:
 - name: xpaas.java
 version: 1.2-dev
 - name: xpaas.amq.install

Workdir

Sets the current working directory of the entrypoint process in the container.

run:
 workdir: "/home/jboss"

Run

The run section encapsulates instructions related to launching main process
in the container including: cmd, entrypoint, user and workdir.
All subsections are described later in this paragraph.

Below you can find full example that uses every possible option.

run:
 cmd:
 - "argument1"
 - "argument2"
 entrypoint:
 - "/opt/eap/bin/wrapper.sh"
 user: "alice"
 workdir: "/home/jboss"

Cmd

Command that should be executed by the container at run time.

run:
 cmd:
 - "some cmd"
 - "argument"

Entrypoint

Entrypoint that should be executed by the container at run time.

run:
 entrypoint:
 - "/opt/eap/bin/wrapper.sh"

Configuration file

Cekit can be configured using a configuration file. We use the
properties file format.

Cekit will look for this file at the path ~/.cekit/config. Its location can be changed via command line --config option.

Example
Running Cekit with different config file:

$ cekit --config ~/alternative_path build

Below you can find description of available sections together with options described in detail.

Contents

	Configuration file

	common

	work_dir

	ssl_verify

	cache_url

	redhat

	doc

	addhelp

	help_template

common

work_dir

Contains location of Cekit working directory, which is used to store some persistent data like
dist_git repositories and artifact cache.

[common]
work_dir=/tmp

ssl_verify

Controls verification of SSL certificates for example when downloading artifacts. Default: True.

[common]
ssl_verify = False

cache_url

Specifies a different location that could be used to fetch artifacts. Usually this is a URL to some cache service.
By default it is not set.

You can use following substitutions:

	#filename# – the file name from the url of the artifact

	#algorithm# – has algorithm specified for the selected artifact

	#hash# – value of the digest.

Example

Consider you have an image definition with artifacts section like this:

artifacts:
 - url: "http://some.host.com/7.0.0/jboss-eap-7.0.0.zip"
 md5: cd02482daa0398bf5500e1628d28179a

If we set the cache_url parameter in following way:

[common]
cache_url = http://cache.host.com/fetch?#algorithm#=#hash#

The JBoss EAP artifact will be fetched from: http://cache.host.com/fetch?md5=cd02482daa0398bf5500e1628d28179a.

And if we do it like this:

[common]
cache_url = http://cache.host.com/cache/#filename#

The JBoss EAP artifact will be fetched from: http://cache.host.com/cache/jboss-eap-7.0.0.zip.

Note

In all cases digest will be computed from the downloaded file and compared with the expected value.

redhat

This option changes Cekit default options to comply with Red Hat internal infrastructure and policies.

Example: To enable this flag add following lines into your ~/.cekit/config file:

[common]
redhat = true

Note

If you are using Cekit within Red Hat infrastructure you should have valid Kerberos ticket.

doc

This section collects together configuration options relating to documentation.

addhelp

This option instructs Cekit to install the generated help.md file into the generate image
sources. The file is inserted at the root path (/). The default value is False.

Example: To enable this flag add following lines into your ~/.cekit/config file:

[doc]
addhelp = true

help_template

This option overrides the default Jinja template used in the generation of help.md files.

Example:

[doc]
help_template = /home/jon/something/my_help.md

Cekit Tutorial

Welcome in Cekit Tutorial, we will guide you through building your first image with Cekit.
We expect you to have Cekit installed already. IF you need help with installation process please
follow our installation intructions.

Creating Image Descriptor

Work in progress

Moving shareable code inside Modules

Work in progress

Creating Test

Work in progress

Index

Documentation contribution

We use the reStructuredText [http://docutils.sourceforge.net/rst.html] format to
write our documentation because this is the de-facto standard for Python documentation.
We use Sphinx [http://www.sphinx-doc.org/en/stable/index.html] tool to generate documentation
from reStructuredText files.

Published documentation lives on Read the Docs: https://cekit.readthedocs.io/

reStructredText

A good guide to this format is available in the Sphinx documentation [http://www.sphinx-doc.org/en/stable/rest.html].

Local development

Note

Consider using Virtualenv [https://virtualenv.pypa.io/en/stable/] to use a clean development environment.
If you are not using Virtualenv we suggest to run below pip command with the --user flag at least.

You need to install required tools to be able to generate documentation locally.

pip install -U -r requirements.txt

Support for auto generating documentation is avialable for local development. Run the command below.

make preview

Afterwards you can see generated documentation at http://127.0.0.1:8000. When you edit any file,
documentation will be regenerated and immediately available in your browser.

Upgrading

Upgrading Cekit

Fedora / CentOS / RHEL

On this platform you should be using RPM and our COPR repository for Cekit [https://copr.fedorainfracloud.org/coprs/g/cekit/cekit/]

Note: We assume, that you have this repository enabled on your system

Fedora

Supported versions: 25, 26, 27.

dnf update python3-cekit

CentOS & RHEL

Supported versions: 7.

yum update python2-cekit

Other systems

We suggest using pip and Virtualenv [https://virtualenv.pypa.io/en/stable/] to host you Cekit.

Activate virtual environment
source ~/cekit/bin/activate

pip install -U cekit

Upgrading from Concreate

Cekit and Concreate are the very same tool. Concreate was rename to Cekit in 2.0 release.

Fedora / CentOS / RHEL

You should be using RPM and yum/dnf to manage Cekit/Concreate installation here.

Fedora

Supported versions: 25, 26, 27.

dnf remove python3-concreate
dnf copr remove goldmann/concreate

dnf copr enable @cekit/cekit
dnf install python3-cekit

CentOS

Supported versions: 7.

yum remove python2-concreate
rm -rf /etc/yum.repos.d/_copr_goldmann-concreate.repo

yum copr enable @cekit/cekit
yum install python2-cekit

RHEL

Supported versions: 7.

yum remove python2-concreate
rm -rf /etc/yum.repos.d/goldmann-concreate-epel-7.repo

curl https://copr.fedorainfracloud.org/coprs/g/cekit/cekit/repo/epel-7/group_cekit-cekit-epel-7.repo -o /etc/yum.repos.d/cekit-epel-7.repo
yum install python2-cekit

Other systems

We strongly advise to use Virtualenv [https://virtualenv.pypa.io/en/stable/] to install Cekit. Please consult
your package manager of choice for the correct package name.

Activate virtual environment
source ~/cekit/bin/activate

pip uninstall concreate
pip install -U cekit

Dotfile migration

Concreate used ~/.concreate.d and ~/.concreate dot files to held its configuration. This was changed with Cekit.
Cekit uses only ~/.cekit directory to host all its configuration files.

To migrate your configuration please run:

mv ~/.concreate.d ~/.cekit
mv ~/.concreate ~/.cekit/config

Artifacts

It’s common for images to require external artifacts.
In most cases you will want to add files into the image and use them at
the image build process.

Artifacts section is meant exactly for this. Cekit will automatically
fetch any artifacts specified in this section
and check their consistency by computing checksum of
the downloaded file and comparing it with the desired value. The output name
for downloaded resources will match the name attribute, which defaults to
the base name of the file/URL. Artifact locations may be specified as urls,
paths or git references.

Note

If you are using relative path to define an artifact, path is considered relative to an
image descriptor which introduced that artifact.

Example: If an artifact is defined inside /foo/bar/image.yaml with a path: baz/1.zip
the artifact will be resolved as /foo/bar/baz/1.zip

artifacts:
 # File will be downloaded and verified.
 - name: jolokia-1.3.6-bin.tar.gz
 url: https://github.com/rhuss/jolokia/releases/download/v1.3.6/jolokia-1.3.6-bin.tar.gz
 md5: 75e5b5ba0b804cd9def9f20a70af649f

 # File exists on local machine relative to this file. Checksum will be verified.
 # The "name" attribute defaults to: "hawkular-javaagent-1.0.0.CR4-redhat-1-shaded.jar"
 - path: local-artifacts/hawkular-javaagent-1.0.0.CR4-redhat-1-shaded.jar
 md5: e133776c76a474ed46ac88c856eabe34

 # git project will be cloned
 # "name" attribute defaults to "project"
 - git:
 url: https://github.com/organization/project
 ref: master

Note

Currently supported algorithms are: md5, sha1 and sha256. If no algorithm is provided, artifact will
be fetched every time.

For artifacts that are not publicly available Cekit provides a way to
add a description detailing a location from which the artifact can be obtained.

artifacts:
 - path: jboss-eap-6.4.0.zip
 md5: 9a5d37631919a111ddf42ceda1a9f0b5
 description: "Red Hat JBoss EAP 6.4.0 distribution available on Customer Portal: https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?softwareId=37393&product=appplatform&version=6.4&downloadType=distributions"

If Cekit is not able to download an artifact and this artifact has a description defined – the build
will fail but a message with the description will be printed together with information on where to place
the manually downloaded artifact.

Note

All artifacts are automatically cached during an image build. To learn more about cache please take a look at Artifact Caching

Description

Short summary of the image.

Value of the description key is added to the image as two labels: description
and summary unless such labels are already defined in the image descriptor’s
Labels section.

description: "Red Hat JBoss Enterprise Application 7.0 - An application platform for hosting your apps that provides an innovative modular, cloud-ready architecture, powerful management and automation, and world class developer productivity."

Environment variables

Similar to labels – we can specify environment variables that should be
present in the container after running the image. We provide envs
section for this.

Environment variables can be divided into two types:

	Information environment variables – these are set and available in
the image. This type of environment variables provide information to
the image consumer. In most cases such environment variables should not
be modified.

	Configuration environment variables – this type of variables are
used to define environment variables used to configure services inside
running container.

These environment variables are not set during image build time but can be set at run time.

Every configuration enviromnent variable should provide an example usage
(example) and short description (description).

Please note that you could have an environment variable with both: a value
and example set. This suggest that this environment variable could be redefined.

Note

Configuration environment variables (without value) are not
generated to the build source. These can be used instead as a
source for generating documentation.

envs:
 - name: "STI_BUILDER"
 value: "jee"
 - name: "JBOSS_MODULES_SYSTEM_PKGS"
 value: "org.jboss.logmanager,jdk.nashorn.api"
 - name: "OPENSHIFT_KUBE_PING_NAMESPACE"
 example: "myproject"
 description: "Clustering project namespace."
 - name: "OPENSHIFT_KUBE_PING_LABELS"
 example: "application=eap-app"
 description: "Clustering labels selector."

Execute

Execute section defines what needs to be done to install this module in the image.
Every execution listed in this section will be run at image build time in the order
as defined.

execute:
 # The install.sh file will be executed first as root user
 - script: install.sh
 # Then the redefine.sh file will be executed as jboss user
 - script: redefine.sh
 user: jboss

Note

When no user is defined, root user will be used to execute the script.

From

This key is required.

Base image of your image.

from: "jboss-eap-7-tech-preview/eap70:1.2"

help

The optional help sub-section defines a single key template, which can be used
to define a filename to use for generating image documentation at build time. By
default, a template supplied within Cekit is used.

At image build-time, the template is interpreted by the Jinja2 [http://jinja.pocoo.org/] template engine. For a concrete example, see the
default help.jinja supplied in the Cekit source code [https://github.com/cekit/cekit/blob/develop/cekit/templates/help.jinja].

help:
 template: myhelp.jinja

Labels

Note

Learn more about standard labels in container images [https://github.com/projectatomic/ContainerApplicationGenericLabels].

Every image can include labels. Cekit makes it easy to do so with the labels section.

labels:
 - name: "io.k8s.description"
 value: "Platform for building and running JavaEE applications on JBoss EAP 7.0"
 - name: "io.k8s.display-name"
 value: "JBoss EAP 7.0"

Modules

Module repositories

Module repositories specify location of modules that are to be incorporated
into the image. These repositories may be git repositories or directories
on the local file system (path). Cekit will scan the repositories for
module.xml files, which are used to encapsulate image details that may be
incorporated into multiple images.

modules:
 repositories:
 # Modules pulled from Java image project on GitHub
 - git:
 url: https://github.com/jboss-container-images/redhat-openjdk-18-openshift-image
 ref: 1.0

 # Modules pulled locally from "custom-modules" directory, collocated with image descriptor
 - path: custom-modules

Module installation

The install section is used to define what modules should be installed in the image
in what order. Name used to specify the module is the name field from the module
descriptor.

modules:
 install:
 - name: xpaas.java
 - name: xpaas.amq.install

You can even request specific module version via version key as follows:

modules:
 install:
 - name: xpaas.java
 version: 1.2-dev
 - name: xpaas.amq.install

Name

This key is required.

Image name without the registry part.

name: "jboss-eap-7/eap70-openshift"

Packages

To install additional RPM packages you can use the packages
section where you specify package names and repositories to be used.

packages:
 install:
 - mongodb24-mongo-java-driver
 - postgresql-jdbc
 - mysql-connector-java
 - maven
 - hostname

Packages are defined in the install subsection.

Repositories

Cekit uses all repositories configured inside the image. You can also specify additional
repositories using repositories subsection. Cekit currently supports following multiple ways of defining
additional repositories:

	Plain

	RPM

	ODCS

	URL

Note

See Repository mangement to learn about best practices for repository
definitions.

Plain

This is the default option. With this approach you specify repository id and Cekit will not perform any action and expect the repository definition exists inside the image. This is useful as a hint which repository must be present for particular image to be buildable. The definition can be overridden by your preferred way of injecting repositories inside the image.

packages:
 repositories:
 - name: extras
 id: rhel7-extras-rpm
 description: "Repository containing extras RHEL7 extras packages"

Note

Behavior of plain repositories is changed when running in Red Hat Environment.

RPM

This ways is using repository configuration files and related keys packaged as an RPM.

Example: To enable CentOS SCL [https://wiki.centos.org/AdditionalResources/Repositories/SCL] inside the
image you should define repository in a following way:

packages:
 repositories:
 - name: scl
 rpm: centos-release-scl

ODCS

This way is instructs ODCS [https://pagure.io/odcs] to generate on demand pulp repositories.
To use ODCS define repository section in following way:

packages:
 repositories:
 - name: Extras
 odcs:
 repository: rhel-7-extras-rpm

Note

Only on demand pulp ODCS repositories are supported now.

URL

This approach enables you to download a yum repository file and corresponding GPG key. To do it, define
repositories section in a way of:

packages:
 repositories:
 - name: foo
 url:
 repository: https://web.example/foo.repo
 gpg: https://web.exmaple/foo.gpg

Ports

This section is used to mark which ports should be exposed in the
container. If we want to highlight a port used in the container, but not necessary expose
it – we should set the expose flag to false (true by default).

You can provide additional documentation as to the usage of the port with the
keys protocol, to specify which IP protocol is used over the port number (e.g
TCP, UDP…) and service to describe what network service is running on top
of the port (e.g. “http”, “https”). You can provide a human-readable long form
description of the port with the description key.

ports:
 - value: 8443
 service: https
 - value: 8778
 expose: false
 protocol: tcp
 description: internal port for frob communication.

Run

The run section encapsulates instructions related to launching main process
in the container including: cmd, entrypoint, user and workdir.
All subsections are described later in this paragraph.

Below you can find full example that uses every possible option.

run:
 cmd:
 - "argument1"
 - "argument2"
 entrypoint:
 - "/opt/eap/bin/wrapper.sh"
 user: "alice"
 workdir: "/home/jboss"

Cmd

Command that should be executed by the container at run time.

run:
 cmd:
 - "some cmd"
 - "argument"

Entrypoint

Entrypoint that should be executed by the container at run time.

run:
 entrypoint:
 - "/opt/eap/bin/wrapper.sh"

User

Specifies the user (can be username or uid) that should be used to launch the entrypoint
process.

run:
 user: "alice"

Version

This key is required.

Version of the image.

version: "1.4"

Volumes

In case you want to define volumes for your image, just use the volumes section!

volumes:
 - name: "volume.eap"
 path: "/opt/eap/standalone"

Note

The name key is optional. If not specified the value of path key will be used.

Workdir

Sets the current working directory of the entrypoint process in the container.

run:
 workdir: "/home/jboss"

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Cekit

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

